Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment
نویسندگان
چکیده
Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.
منابع مشابه
Equal Channel Angular Pressing to Produce Ultrafine Pure Copper with Excellent Electrical and Mechanical Properties
In this article, commercially pure copper samples were severely deformed by equal channel angular pressing (ECAP) up to eight passes at room temperature. The effects of severe plastic deformation on the microstructure, mechanical properties, and electrical conductivity of the copper were investigated. The microstructure evolution was followed by optical microscope and field emission scanning el...
متن کاملEffect of Equal Channel Angular Pressing and Annealing Treatment on the Evolution of Microstructure in AlMg0.7Si Aluminum Alloy
In this research, samples of AlMg0.7Si aluminum alloy are deformed up to three passes using equal channel angular pressing (ECAP). Formation of a sub-micron structure after three passes of ECAP is demonstrated. Microstructural stability of the samples is investigated at temperatures of 300-500 °C. At 300 °C, fine recrystallized structure forms after 10 min which remains stable when the ...
متن کاملHot and Cold Tensile Behavior of Al 6061 Produced by Equal Channel Angular Pressing and Subsequent Cold Rolling
The full annealing AA6061 aluminum alloy was subjected to severe plastic deformationvia the combination of equal channel angular pressing (ECAP) and cold rolling (CR) in order torefine its microstructure and to improve its mechanical properties. According to the results of hotand cold tensile tests, the combination of ECAP and CR significantly affected the final strengthand ductility of studied...
متن کاملMicrostructure and mechanical properties of AZ91 tubes fabricated by Multi-pass Parallel Tubular Channel Angular Pressing
Parallel Tubular Channel Angular Pressing (PTCAP) process is a novel recently developed severe plastic deformation (SPD) method for producing ultrafine grained (UFG) and nanograined (NG) tubular specimens with excellent mechanical and physical properties. This process has several advantageous compared to its TCAP counterparts. In this paper, a fine grained AZ91 tube was fabricated via multi pas...
متن کاملEvolution of Texture and Grain Size during Equal Channel Angular Extrusion of Pure Copper and 6012 Aluminum
Among different SPD techniques, Equal channel Angular Pressing has attracted the most attentions, because of applying large strain to solid bulk materials. In this research, ECAP process up to 6 passes was carried out on a pure copper and a 6012 Al-Mg-Si alloy with BC route in ECAP dies with Φ=120 and Ψ=20 and diameter of 20and 10 millimeter respectively. Moreover, X-ray diffraction (XRD) syste...
متن کامل